|
In numerical analysis and scientific computing, the Gauss–Legendre methods are a family of numerical methods for ordinary differential equations. Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on ''s'' points has order 2''s''. All Gauss–Legendre methods are A-stable. The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is: : The Gauss–Legendre method of order four has Butcher tableau: : The Gauss–Legendre method of order six has Butcher tableau: : || || || |- | style="border-right:1px solid;" | || || || |- | style="border-right:1px solid; border-bottom:1px solid;" | || style="border-bottom:1px solid;" | || style="border-bottom:1px solid;" | || style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || || || |} The computational cost of higher-order Gauss–Legendre methods is usually too high, and thus, they are rarely used. == Notes == 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gauss–Legendre method」の詳細全文を読む スポンサード リンク
|